And p53-dependent, but ATF3-independent cell death. Toxicol Lett 2013, 219:93?8. 40. O’Malley KL: The role of axonopathy in Parkinson’s disease. Exp Neurobiol 2010, 19:115?19. 41. Antenor-Dorsey JA, O’Malley KL: WldS but not Nmnat1 protects dopaminergic neurites from MPP + neurotoxicity. Mol Neurodegener 2012, 7:5. 42. Wang HL, Chou AH, Wu AS, Chen SY, Weng YH, Kao YC, Yeh TH, Chu PJ, Lu CS: PARK6 PINK1 mutants are defective in keeping mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim Biophys Acta 1812, 2011:674?84. 43. Kane LA, Youle RJ: PINK1 and Parkin flag Miro to direct mitochondrial traffic. Cell 2011, 147:721?23. 44. Narendra D, Tanaka A, Suen DF, Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008, 183:795?03. 45. Narendra D, Walker JE, Youle R: Mitochondrial high-quality manage mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 2012, four:a011338. 46. Grenier K, McLelland GL, Fon EA: Parkin- and PINK1-Dependent Mitophagy in Neurons: Will the True Pathway Please Stand Up? Front Neurol 2013, 4:one hundred. 47. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R: Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 2013, 136:166?82. 48. Tovilovic G, Zogovic N, Soskic V, Schrattenholz A, Kostic-Rajacic S, Misirkic-Marjanovic M, Janjetovic K, Vucicevic L, Arsikin K, Harhaji-Trajkovic L, Trajkovic V: Arylpiperazine-mediated activation of Akt protects SH-SY5Y neuroblastoma cells from 6-hydroxydopamine-induced apoptotic and autophagic death. Neuropharmacology 2013, 72:224?35. 49. Ebrahimi-Fakhari D, Wahlster L, Hoffmann GF, Kolker S: Emerging part of autophagy in pediatric neurodegenerative and neurometabolic ailments.1310680-47-7 Purity Pediatr Res 2013, 75:217?26.Tributyl-2-thiazolylstannane Formula 50. Lee KM, Hwang SK, Lee JA: Neuronal Autophagy and Neurodevelopmental Issues. Exp Neurobiol 2013, 22:133?42. 51. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM, Ziegenfuss JS, Milde S, Hou YJ, Nathan C, Ding A, Brown RH Jr, Conforti L, Coleman M, Tessier-Lavigne M, Z hner S, Freeman MR: dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 2012, 337:481?84. 52. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z: Promoting axon regeneration within the adult CNS by modulation with the PTEN/mTOR pathway.PMID:24856309 Science 2008, 322:963?66. 53. Park KK, Liu K, Hu Y, Kanter JL, He Z: PTEN/mTOR and axon regeneration. Exp Neurol 2010, 223:45?0.doi:10.1186/1750-1326-9-17 Cite this short article as: Lu et al.: The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Molecular Neurodegeneration 2014 9:17.
At the time of fertilization, when a spermatozoon encounters an oocyte, it very first binds to its membrane then, each membranes fuse with each other. Drastic oocyte membrane reorganization occurs (for overview [1]). Concerning the proteins of the oocyte membrane clearly involved in the process of gametes adhesion/fusion, one would be the tetraspanin Cd9 [2,three,4], the other is, at the least, one but still unknown, glycosylphosphatidylinositol-anchored protein (GPIanchored protein) [5,6]. We have currently hypothesized on the links amongst these two proteins and in specific around the membrane reorganization in the time of g.